Kernel Penalized K-means: A feature selection method based on Kernel K-means

نویسندگان

  • Sebastián Maldonado
  • Emilio Carrizosa
  • Richard Weber
چکیده

Article history: Received 11 June 2014 Received in revised form 23 October 2014 Accepted 11 June 2015 Available online 19 June 2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multiple Kernel K-means Using L21-Norm

The k-means algorithm is one of the most often used method for data clustering. However, the standard k-means can only be applied in the original feature space. The kernel k-means, which extends k-means into the kernel space, can be used to capture the non-linear structure and identify arbitrarily shaped clusters. Since both the standard k-means and kernel k-means apply the squared error to mea...

متن کامل

Scalable Embeddings for Kernel Clustering on MapReduce

There is an increasing demand from businesses and industries to make the best use of their data. Clustering is a powerful tool for discovering natural groupings in data. The k-means algorithm is the most commonly-used data clustering method, having gained popularity for its effectiveness on various data sets and ease of implementation on different computing architectures. It assumes, however, t...

متن کامل

On the Existence of Kernel Function for Kernel-Trick of k-Means

This paper corrects the proof of the Theorem 2 from the Gower’s paper [3, page 5]. The correction is needed in order to establish the existence of the kernel function used commonly in the kernel trick e.g. for k-means clustering algorithm, on the grounds of distance matrix. The scope of correction is explained in section 2. 1 The background problem Kernel based k-means clustering algorithm (clu...

متن کامل

Scalable Kernel k-Means via Centroid Approximation

Although kernel k-means is central for clustering complex data such as images and texts by implicit feature space embedding, its practicality is limited by the quadratic computational complexity. In this paper, we present a novel technique based on scalable centroid approximation that accelerates kernel k-means down to a sub-quadratic complexity. We prove near-optimality of our algorithm, and e...

متن کامل

The Global Kernel k -Means Algorithm for Clustering in Feature Space

Kernel k-means is an extension of the standard k -means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 322  شماره 

صفحات  -

تاریخ انتشار 2015